
1

Copyright 2012 by Will Warner April 17, 2012

Instructions for FBWwinAppDemo

FBWwinAppDemo is a Visual Studio 2005 solution. It was developed to illustrate the programming

techniques described in the book A Fly-By-Wire Architecture for Multi-Threaded Windows Apps, by Will

Warner. The book is available on Amazon.com. The solution converts effortlessly into VS2008 and

VS2010.

The FBWwinAppDemo Visual Studio solution contains two projects. One project—

FBWwinAppInfrastructure—produces a DLL that furnishes the fly-by-wire infrastructure. The other

project—RobotController—includes the forms and additional classes that make use of the infrastructure

to achieve the functionality required of the robot controller.

You can build the executable and run it (...\WinAppDemo\bin\FBWwinAppDemo.exe), or run the

program in the Visual Studio debugger (double click on FBWwinAppDemo.sln to load the solution into

Visual Studio).

Either way you run it, the first thing you see is the form that serves as the control panel of the robot

controller (Figure 1).

Once the controller is started, text boxes arrayed across the top of the form will display the intensity of

radiation detected by the eight IR sensors. Below these, the form will indicate the direction of the IR it is

sensing—is it coming mostly from the left-front, right-front, or straight ahead?

Along the left side, groups of controls will display the status of the left wheels, front and rear. A similar

arrangement of controls on the right will display the status of the right wheels.

The progress bar at the bottom will show progress of self-testing and setup-file downloading.

A click on the Close button will close the program.

A click the Debug button will launch the debug screen.

The buttons down the middle initiate self-test, setup (configuration), and the starting and stopping of

active control of the robot.

Getting Started

If there were an actual robot connected to your PC, the robot controller program—Moth Control—

would communicate with it and control it. Because there is no real robot, however, you have to begin

by launching a form that will simulate the robot. That form responds to the robot controller’s

commands as a real robot would.

2

Figure 1: Main form of the robot control program. This form serves as the control panel for the robot

controller.

To launch the robot simulator form, first launch the debug form by clicking the Debug button on the

main form. On the Debug Support form that appears (Figure 2), click Show Additional Debug and you

will see the Simulate Moth form (Figure 3).

Once the that form is showing, you can return to the main form and begin the steps to self-test, setup,

and start control of the (simulated) robot. The Start button on the control panel becomes enabled only

after the robot has passed self-test and been configured.

3

Figure 2: Debug Support form. From this form you launch the simulated robot, view message traffic,

and launch forms that monitor the state and activity of Engines (threads that respond to messages)

within the program.

4

Figure 3: Robot simulation form, Simulate MOTH. This is its initial appearance before robot control

has started. The form must be open for the robot control program to complete the self-test and setup

operations, because code in this form responds to commands as a real robot would.

5

Self-test

When you click the Self-test button, the program sends self-test commands to all the wheel controllers.

Figure 4 depicts the appearance of the control panel while self-testing is in progress.

Figure 4: Robot control panel while self-testing underway.

Setup (Configuration)

After self-testing, the next step is to configure control of the wheels by sending the wheel controllers

the contents of a setup file. Click on Setup and the program displays a dialog for selecting a setup file

used to configure the wheel controllers (Figure 5). Choose MothSetup.txt and click OK.

The dialog will close and the program will download the contents of the file you selected to the four

wheel controllers, one by one. Figure 6 shows the appearance of the control panel while downloading

to the left-rear wheel controller. Figure 7 shows the appearance of the simulated robot after the left-

6

front wheel controller has been configured, and while the left-rear wheeler controller is in the process

of being configured.

Start

When configuration of all wheel controllers completes, the control panel will enable its Start button

(Figure 8). Click it to begin operation. Once operation has begun, the start-button is relabeled Stop.

While actively controlling the robot, the Close button is disabled; it is re-enabled when you stop active

control of the robot by clicking the Stop button.

Figure 9 depicts the control panel after starting but before the simulated robot form has begun to

simulate infrared radiation (IR). The control panel shows 0 IR and direction none.

Go to the Simulated Moth form. Click on Irv to start the simulation of IR. Irv turns red and the robot

avatar begins walking toward Irv (Figure 10). Use the slide bar to move Irv to another location. The

robot avatar will change course to follow Irv. Figure 11 shows the robot homing in on Irv after you have

stopped moving him.

Figure 5: Dialog box for picking a setup file for configuring the wheel controllers.

7

Figure 6: Appearance of the robot control panel while downloading configuration to the left-rear wheel

controller.

Figure 7: Appearance of the Simulate MOTH form while downloading configuration to the left-rear

wheel controller, after having downloaded configuration to the left-front wheel controller.

8

Figure 8: The control panel form, after self-test and setup, ready to start controlling the robot.

9

Figure 9: Control panel after control started, but before IR simulation has begun.

10

Figure 10: The robot avatar tracking toward Irv, the source of simulated infrared radiation.

11

Figure 11: The robot homing in on Irv.

Debug Support

The Debug Support form (Figure 12) can aid in debugging. That form functions as a “sniffer” on the

logical bus. On the right, the form lists the names of all the logical messages defined in the program. A

programmer can select any number of the messages names. Each time a selected message appears on

the bus, the form displays it and its payload.

The Debug Support form also enables a programmer to see what’s going on with engines and jobs. The

form presents a list of all the engines defined by the program (top right). Select one, say, Left Front

Wheel, and click the Show Engine Monitor button. The form in Figure 13 will appear. The form displays

the status of the engine and the job it is running, if any. The one in Figure 13 shows that the wheel

engine for the left front wheel executed a Self-Test Wheel job, the job was successful, and the engine

became idle.

12

Figure 12: Debug Support form showing communication with wheel controllers during download of

setup files.

13

Figure 13: Engine Monitor showing status of the wheel engine for the left front wheel during self-

testing on that wheel.

